

24

Scientific Bulletin of the „Petru Maior” University of Tîrgu Mureş

Vol. 10 (XXVII) no. 1, 2013

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM)

A MODEL FOR USER INTERFACE DESIGN IN

DATABASE-DRIVEN INFORMATION SYSTEMS

Marius MUJI

Petru Maior University of Tirgu Mures

Nicolae Iorga street, no. 1, 540088, Tirgu Mures, Romania
1marius_muji@yahoo.com

Abstract

Current technologies employed for user interface development in database-driven

information systems have a procedural approach – they need to specify HOW the business

rules should be enforced, through a sequence of operations on data (e.g., create, retrieve,

update, delete). Therefore, the development process is time-consuming and error prone.

This paper proposes a logical data model – inspired by and complementary to the

relational model – which allows a declarative approach in application development. We

also present an example which specifies, in terms of the proposed model, WHAT data

integrity constraints should be (automatically) enforced be the system.

Key words: Logical design, data models, declarative specifications

1. Introduction

A Database-driven Information System is a

generical name for any information system built

around an integrated and shared source of data, i.e., a

database [1], and whose basic functions can be

reduced, conceptually, to the following simple

operations on data: create, retrieve, update, delete

(CRUD).

Actually, almost all the Information Systems that

we use daily are database-driven. From the so called

ERPs (Enterprise Resource Planning systems), which

ensures the data integration, through a common

database, for large organizations, to any virtual store,

all these systems are, basically, database-driven,

regardless the various technologies employed for

their development.

 Architecturally, besides the database itself, these

systems contain a presentation component, which

exposes the appropriate data for every particular

(category of) user(s). When the system provides

information to a large community of users, there will

be many different user views [2] (UV) on the system's

data.

 The technology of choice for the integrated,

central, component of the system (i.e., the database),

are the Database Management Systems, which follow

the same theoretical model: "the relational model",

proposed in 1969 by E.F. Codd [3]. This is a

rigorous, mathematical model which provides the

conceptual foundation for the most important

database technologies.

On the other hand, the presentation component,

composed by all the user views of the system, is

developed using programming languages like C, Java,

Delphi, etc. Those languages do not benefit from the

same theoretical support as the database technologies.

This is why the real world "business rules" related to

the "presentation data" cannot be expressed directly,

in a declarative manner, as part of the data structures’

definition - like in the database case. The nature of

the employed technology forces a procedural

approach, in which the business rules are expressed

through a sequence of elementary CRUD operations

on data. Even though the great majority of

programming languages have raised substantially

their level of abstraction in the last decades, they are

still procedural in nature, so that at a certain point in

the development process, somebody still needs to

write (procedural) code, in order to express all the

required business rules of the system.

There is a plethora of presentation level (i.e., user

interface) development technologies on the market,

with the main objective of reducing the amount of

code (programming work), through various

declarative facilities, which allow the subsequent

automatic generation of the procedural code. None of

them provide a complete solution for the objective of

"code elimination", due to the previously stated

reason: the lack of a rigorous theoretical support.

This paper proposes a logical data model for the

declarative specification of the presentation level in

database-centric systems. As for any logical data

model [4], we need to define the data structures, the

operators, and the integrity constraints used to

represent and to manipulate data in a consistent

25

manner. The corresponding definitions are covered

respectively by the sections 2, 3, and 4 , while section

5 provides an example for the model usage in a

common practical situation. Section 6 concludes and

present some future projects.

2. Data Structures

There are two important requirements for data

collections that need support at the presentation level:

ordering and current position. The second relies on

the first, and both are incompatible with the set theory

(and thus with the relational model). However, these

are the only essential data definition requirements

needed at the UV level and not supported by the

relational model.

On the other hand, the essentiality of the data

model, i.e. the existence of a unique data constructor,

is one of Codd’s great ideas, and it should be

considered for any data model definition.

The presentation model uses the array of tuples

[5] as the only data constructor. The array is defined

as an ordered pair, with the second element being a

table which has a mandatory column, seq_no, and the

first element indicating the current element in the

sequence.

3. Operators

Since the only UV data structure is the array, we

will need some array operators. In order to take

advantage of the power of the relational algebra, and

also to eliminate the impedance mismatch with the

RDBMSs data structures, it is necessary to define

operators which perform a transformation from

relations to arrays and vice-versa. Consequently, the

presentation model needs two categories of operators:

1. Array operators;

2. Relational operators (relational algebra).

The array operators are defined as follows:

 Cardinality – returns the cardinality of the

array’s table;

 Extract Attribute Val – returns the value of a

specified attribute of the current tuple of a

specified array (if the array is ‘empty’, it will

return a default value);

 Extract Current Tuple – self explained;

 Get Cursor – returns the sequence number of

the current tuple;

 Set Cursor – changes the current position of

the cursor in the specified array;

 Array-to-Table - extracts the second element

of the ordered pair which defines the array;

 Table-to-Array – transforms a table into a set

of arrays.

Note that, in the case of Table-to-Array operator,

the cardinality of the obtained set of arrays is

determined by the specified ordering criteria, and it

can take a value from one to the cardinality of the

considered table. At implementation, there is always a

possibility to reduce to one this value, using the

physical order of the table’s tuples.

4. Integrity Constraints

There are two categories of integrity constraints

which needs to be defined for a user view. The first

category of constraints are meant to enforce the

consistency of the UV data, as if the UV where

isolated from the database. Their definition is almost

identical with the definition of the database

constraints [6]. Thus, we will have:

 Attribute constraints – contained in the

characterization of each array structure;

 Tuple constraints – contained in the

definition of the tuple universes;

 Table constraints – contained in the

definition of the table universes;

 User view constraints – contained in the

definition of the user view universe;

 User view state transition constraints –

contained in the definition of the user view’s

state transition universe.

The second category of constraints should keep

the entire system (DB + VU) consistent, enforcing the

semantic synchronization between the user view and

the database. This synchronization implies bi-

directional transformations/mappings between the

data structures defined at the database level and the

data structures defined at the UV level. Thus, we will

have:

 System update constraints – contained in the

update transitions universe of the system;

 User view refresh constraints – contained in

the refresh transitions universe of the system.

These mapping constraints are the key ingredient

of the presentation model: they facilitate the

declarative development and the automation of the

User Interface.

5. Example

The following example is inspired from the

chapter about presentation rules in reference [7].

Let us consider a User View that presents to the

end user data about customers, orders, and order

details. The user should have to be able to see at any

time all the customers located in a specific region

which have a credit limit less than a certain value.

The displayed customers should be ordered by name,

by credit limit, or by the total value of their orders (as

indicated by the user).

Likewise, the user should be able to see the orders

which belong to the current customer and their

issuing date is in a certain period (say, after a

start_date and before an end_date, specified by the

user). The user may also choose the ordering

sequence of the respective orders: by date, value-

ascending, or value-descending.

When the user inspects a specific order, the

system should provide all the order_details that

belong to that particular order. The user should also

26

be able to track the current order’s history and to

insert a new status for the respective order.

Figure 1 shows an entity-relationship diagram [8]

[9] of the arrays (represented by boxes) of our sample

User View, end their mutual relationships

(represented by arrows).

Order

Credit limit

Customer

Region
Customer

sequence

Time frame
Order

sequence

Order details

Order

Tracking
Stage

Fig. 1: The user view example in E-R representation

Each of these arrows indicates a dependency

relationship between two arrays. There are two

categories of dependency relationships [10] with

graphical representation: the first, associated with the

refresh constraints; the second, associated with the

update constraints.

The dependency relationships associated with

refresh constraints: the database queries specified for

the refresh constraints of the dependent (children)

arrays need some parameters, whose values are taken

(at run time) from the current tuple of the referenced

(parent) arrays. Since the entire content of the child

array depends on the current tuple of the parent array,

the dependency relationships of this category are

many-to-one relationships, and have the same

importance at the user view level, as the foreign keys

at the database level. This category of relationships

are used (at the physical/implementation level) to

build the dependency graph which guides the

automatic execution of all the database queries

needed to refresh the entire user view. The graphical

representation is done by a plain arrow, oriented from

child to parent. Self reference relationships are not

allowed, neither do cycles in the dependency graph.

The dependency relationships associated with

update constraints: the database transactions

specified for the update constraints of the dependent

(children) arrays need some parameters, whose values

are taken (at run time) from the current tuple of the

referenced (parent) arrays. This category of

relationships presents a secondary importance,

compared with the first category, and their graphical

representation is done by a dashed arrow, oriented

from child to parent. Self reference relationships of

this kind are allowed (being actually the most

common), but do not have a graphical representation.

In terms of the proposed presentation model,

using an SQL-like syntax, the User View Schema [11]

can be specified as follows:

CREATE ARRAY Credit_Limit

(

Value money_dom DEFAULT 0

);

CREATE ARRAY Region

(

Region_ID id_dom,

Region_Name region_dom

CONSTRAINT region_refresh

 REFRESH_ARRAY get_region()

)

We assume that get_region() is a function without

parameters, which returns a relation (table) with the

same header as the array Region (it might be an SQL

View, a stored procedure, or any other function,

written in any language, which satisfies the above

conditions).

CREATE ARRAY Customer_Sequence

(

Code cust_seq_dom,

Description descr_dom

CONSTRAINT customer_sequence_refresh

 REFRESH_ARRAY get_cust_seq()

)

We assume that get_cust_seq() is a function

without parameters, which returns a relation (table)

with the same header as the array

Customer_Sequence (more specifically, the returned

relation will have three tuples, corresponding to the

required options: ‘name’, ‘credit limit’, and ‘total

value’, e.g. { {‘N’, ‘name’}, {‘C’, ‘credit_limit’},

{‘T’, ‘total value’} }).

The entities Customer, Time_Frame,

Order_Sequence, Stage, and Order, respectively,

have similar definitions. The logical schema for the

entities Order_Details and Order_Tracking is

specified as follows.

CREATE ARRAY Order_Details

(

Product_name prod_name_dom,

Quantity quantity_dom,

Unit_price money_dom,

Value money_dom

CONSTRAINT order_detail_refresh

REFRESH_ARRAY

get_order_details(Order.Order_ID)

)

We assume that get_order_details() is a function

(e.g., a stored procedure, a table-valued function)

with one parameter (the order ID), which returns a

relation (table) with the same header as the array

Order_Details. At run-time, the enforcement of the

refresh constraint will determine the execution of

get_order_details(): its argument will take the value

of the attribute Order_ID from the current tuple of the

array Order.

27

CREATE ARRAY Order_Tracking

(

Date date_dom,

Stage stage_name_dom,

Comments comments_dom

CONSTRAINT order_tracking_refresh

REFRESH_ARRAY

get_order_tracking(Order.Order_ID);

CONSTRAINT order_tracking_insert

 INSERT_TUPLE insert_order_tracking(

 Order.Order_ID,

 Stage.Stage_ID,

 Order_Tracking.Date,

 Order_Tracking.Comments)

)

We assume that insert_order_tracking() is an

update procedure (e.g., a stored procedure) with four

parameters: the order ID, the stage ID, the DATE in

which the order reaches the stage with the specified

id, and the optional comments associated with that

stage of the considered order. At run-time, the

enforcement of the INSERT TUPLE constraint –

triggered by any insert of a tuple in the array

Order_Tracking – will determine the execution of

insert_order_tracking(): the first argument will take

the value of the attribute Order_ID from the current

tuple of the array Order; the second argument will

take the value of the attribute Stage_ID from the

current tuple of the array Stage; the third argument

will take the value of the attribute Date from the

current (inserted) tuple of the array Order_Tracking;

the fourth argument will take the value of the attribute

Comments from the current (inserted) tuple of the

array Order_Tracking. If the insert will be rejected

due to some violated database constraints, or to any

business rule implemented at the

insert_order_tracking() procedure level, the tuple

insert should be rejected for the Order_Tracking

array, as well. If the insert is accepted at the database

level, the refresh constraint should be automatically

enforced, causing the execution of the

get_order_tracking() procedure.

6. Conclusions

Current practice in information systems

development promotes technologies and languages

which strive to provide a high level of abstraction,

through nowadays popular approaches like the

OMG’s Model Driven Architecture [12] [13]. Our

logical data model provides the conceptual

foundation for declarative technologies that allows

for a data-model driven approach in application

development [14] [15] [16]. Declaring business rules

in terms of data integrity constraints, their

enforcement can be automated, eliminating the

procedural code. This approach can lead to important

changes for the entire industry, like:

- a dramatic reduction of the development and

maintenance costs;

- the transformation of the programmers in data

designers - switching the focus from how the system

is developed to what data should be exposed to the

user;

- eventually, the "democratization" of the

Information Systems - allowing anyone to develop a

personal-purpose database-driven system, without

need for any programming skills.

Future work will concentrate on model

implementation in various technologies. A common

data description language (DDL) will also be

specified, in order to provide a seamless integration

of the implementation technologies, through a

common metadata dictionary.

References

[1] C. J. Date, An Introduction to Database Systems (8th

edition).: Addison-Wesley, 2003.

[2] ANSI/X3/SPARC Study Group on Data Base

Management Systems, "Interim Report," 1975.

[3] E. F. Codd, "A relational model for large shared data

banks," Communications of the ACM, vol. 13, no. 6,

pp. 377-387, 1970.

[4] Edgar F. Codd, "Data models in database

management," in The 1980 workshop on data

abstraction, databases and conceptual modeling, New

York, February 1980.

[5] C. J. Date and Hugh Darwen, Foundation for Future

Database Systems: The Third Manifesto (2nd

Edition).: Addison-Wesley, 2000.

[6] Lex de Haan and Toon Koppelaars, Applied

Mathemathics for Database Professionals.: Apress,

2007.

[7] C. J. Date, What Not How: The Business Rules

Approach to Application Development.: Addison-

Wesley, 2000.

[8] Peter Pin-Shan Chen, "The Entity-Relationship Model:

Toward a Unified View of Data," ACM Transactions

on Database Systems, vol. 1, no. 1, pp. 9-36, 1976.

[9] David C. Hay, Data Model Patterns: A Metadata

Map.: Morgan Kaufmann, 2006.

[10] C. J. Date, Logic and Databases: The Roots of

Relational Theory.: Trafford Publishing, 2007.

[11] David C. Hay, "Data Model Views," The Data

Administration Newsletter - TDAN.com, April 2000.

[12] OMG. (2000) MDA Specifications. [Online].

http://www.omg.org/mda/specs.htm

[13] Object Management Group. (2009) UML Resource

Page. [Online]. http://www.uml.org/

[14] Bill Lewis, "Data-Oriented Application Engineering:

An Idea Whose Time Has Returned," The Data

Administration Newsletter - TDAN.com, January 2007.

[15] Bill Lewis, "Data-Driven Molecular Specifications,

Part 1," The Data Administration Newsletter -

TDAN.com, October 2010.

[16] Bill Lewis, "Data-Driven Molecular Specifications,

Part 2," The Data Administration Newsletter -

TDAN.com, December 2010.

http://www.omg.org/mda/specs.htm
http://www.uml.org/

